a) regeneração (substituição das células danificadas)
b) substituição por tecido conjuntivo = fibrose (cicatriz)
Controle do Crescimento Celular Normal –
Estímulos: morte celular, lesões ou deformações mecânicas dos tecidos.
Ciclo Celular e Potencial Proliferativo: G0; G1; S; G2; Mitose.
1. Células lábeis: divisão contínua. Epitélios de superfície; epitélio gastrointestinal colunar e uterino; medula óssea e células hematopoéticas.
2. Células Estáveis (Quiescentes): baixo nível de replicação (necessitam de estímulo). São exemplos: células parenquimatosas (fígado, rim e pâncreas); células mesenquimatosas (fibroblastos e músculo liso) e células endoteliais vasculares.
Obs. A regeneração celular pode não restabelecer a arquitetura original – se houver lesão da membrana basal a estrutura não é refeita originalmente.
3. Células permanentes: células nervosas e células da musculatura esquelética e cardíaca.
Eventos moleculares no crescimento celular –
Sinalizações intracelulares:
a) Autócrina: células respondem a sinalizações por elas mesmas produzidas – por exemplo em tumores e na hiperplasia epitelial.
b) Parácrina: células produzem moléculas que afetam uma célula-alvo em estreita proximidade. Por exemplo no reparo das feridas.
c) Endócrina: hormônios sintetizados por órgãos endócrinos atuando em alvos a longa distância (via corrente sangüínea).
Receptores de Superfície Celular –
- Crescimento celular é mediado por ativações de receptores de superfície: um determinado fator de crescimento interage com um receptor contido no citoplasma, núcleo ou mesmo na membrana plasmática.
1. Receptores com atividade intrínseca quinase:
a. Domínio extracelular (para interação com o ligante)
b. Única região transmembrânica
c. Domínio citosólico: atividade tirosinoquinase e ou atividade serina-treonina.
d. Receptor de Insulina
e. Receptor de crescimento neuronal (NGF)
Exemplos de receptores tirosinoquinase: fator de crescimento epidérmico (EGF), fator de crescimento fibroblástico (FGF) e fator de crescimento plaquetário (PDGF) dentre vários outros.
São fatores diméricos que contém duas regiões para a ligação com o receptor formando um dímero de receptor: a molécula receptora fosforila a outra no dímero – haverá fosforilação cruzada dos resíduos de tirosina, sendo o “start” para ativação de uma cascata de fosforilações seqüenciais com ativação da seqüência gênica de consenso e ativação de fatores transcricionais como c-fos, ras, erb-1 – Após a dimerização do receptor haverá autofosforilação do mesmo = criação de sítios de ligação para uma série de proteínas citosólicas com domínio src (domínios de tirosina fosforiladas). O esquema abaixo mostra o funcionamento da via chamada de MAP-quinase, muito relevante no crescimento celular e regulação do metabolismo da mesma.

a. Receptores da superfamília de receptores acoplados a tirosinoquinase
b. Possuem um único segmento
c. Promovem fosforilações de quinases – STAT ativando resíduos de serina e treonina.
d. Via da jasnu-quinase: sistema JAK-STAT – quando houver ligação dos resíduos ativados pelo STAT no receptor há liberação do JAK.
3. Receptores sem atividade catalítica intrínseca:
a. Domínio extracelular (ligante)
b. Uma única região transmembrânica
c. Domínio citosólico – associa-se diretamente a tirosinoquinases citosólicas. Por exemplo a superfamília das citocinas.
4. Receptores acoplados a proteína G:
a. Possuem 7 alças transmembrânicas
b. São exemplos os mais variados receptores: adrenérgicos, muscarínicos, dopaminérgicos, gabaérgicos, glutamaérgicos, etc.
Sistema de Transdução de Sinal –
- Sinais extracelulares – Sinais Intracelulares – MAP-quinase / PI-3 quinase / IP3 / AMPc / PLC / PLA2 / GMPc / JAK-STAT.

- Ciclinas (A,B,E).
- Conjunto de pontos de controle.
- Ciclinas executam suas funções ao formarem complexos com proteínas quinases ciclina dependente (CDK). Quando a célula passa para a fase G2 ocorre síntese de ciclina B que se liga a CDK1 constitutiva = entrada da célula na fase de mitose. Ciclina após realizarem sua atividade (fosforiladas) são degradadas pela via ubiquitina-proteassoma.
- As CDKs são reguladas por inibidores: p21 e p27 principalmente.
- A transição de G1-S é controlada pela fosforilação da proteína do retinoblastoma (Rb).
- A Rb seqüestra fatores de transcrição como o E2F – responsável pela transição da fase G0 para a fase G1. A medida que a célula progride no período G1 há aumento da ciclina D com ativação da CDK que hiperfosforila a proteína do retinoblastoma rompendo a ligação com E2F = entrada no período S do ciclo celular.
- Pontos de controle: mecanismos de vigilância – identificam os problemas na transcrição do DNA – por exemplo: ativação do p53 atuando e ativando, por sua vez, a p21, realizando a parada do ciclo celular e tentativa de reparo pelo GADD45. Se não houver o reparo a célula entrará em apoptose.
- Inibição do crescimento: inibição pode se dá por contato (célula-célula). Ativação do beta-TGF atuando sobre as fosforilações da serina e treonina quinase, SMAD e aumento do p27 diminuindo a taxa de CDK2 e conseqüentemente diminuindo a fosforilação do Rb.
- Fatores de Crescimento: importante na cicatrização de feridas. Podemos citar o EGF, alfa-TGF, PDGF (plaquetas), FGF, VEGF (vasculogênese) e beta-TGF.






- A destruição tecidual: ocorre na inflamação necrosante (inflamação crônica) acometendo células parenquimatosas e estroma (tecido de sustentação).
- A substituição do tecido lesado por tecido conjuntivo denomina-se fibrose (cicatriz).
- Há várias etapas de cicatrização:
- Angiogênese
- Proliferação de fibroblastos
- Deposição de matriz extracelular
- Maturação e organização do tecido fibroso (remodelamento)
- Fatores de crescimento: no processo de remodelagem tecidual alguns fatores devem ser considerados como a regulação das metaloproteinases da matriz. Os fatores de crescimento estimulam a síntese de colágeno e de outras moléculas do tecido conjuntivo. A degradação do colágeno se dá pela ativação das famílias das metaloproteinases da matriz dependentes dos íons zinco para sua atividade. As metaloproteinases são colagenases intersticiais que clivam o colágeno fibrilar dos tipos I, II e III bem como a fibronectina; estromelisinas atuando sobre proteoglicanos, laminina, colágeno amorfo e fibronectinas. Uma vez formadas as metaloproteinases são rapidamente degradadas pela família dos inibidores teciduais específicos das metaloproteinases (TIMP) produzidos pelas células mesenquimatosas.

Neste processo de neovascularização ocorrerá degradação da membrana basal do vaso original; migração de células endoteliais para estímulo angiogênico; proliferação de células endoteliais e subseqüente maturação destas células (remodelamento) e por fim, recrutamento das células periendoteliais para sustentar os tubos endoteliais (vasculares).
Observe na figura abaixo os fatores envolvidos nestes processos acima descritos: VEGF atuando em receptores VEGF-R2 (promovendo a proliferação celular); VEGF-R1 promovendo a formação do tubo; estes dois processos determinam a vasculogênese enquanto que a angiogênese conta também com a ativação de angiopoetinas (Ang1-Tie2) para estabilização do vaso recém-formado; (Ang2-Tie2) tornando o endotélio mais responsivo ao controle negativo exercido pelo VEGF. Enquanto o processo de maturação ocorre fatores como PDGF e beta-TGF estão ativados.

Processo de Fibrose (FIBROPLASIA) –
- Migração e proliferação de fibroblastos na lesão.
- Deposição de matriz extracelular.
a) Proliferação de fibroblastos: há aumento de VEGF com formação de tecido de granulação responsável pelo aumento da permeabilidade vascular = formação de estroma provisório formado com crescimento de fibroblastos. Promovidos por IL-1, alfa-TNF, beta-TGF e PDGF.
b) Deposição de matriz extracelular: colágenos são importantes na resistência da cicatriz.
Cicatrização das feridas –
- Processo inflamatório agudo – Regeneração parenquimatosa – parênquima + tecido conjuntivo – síntese de matriz extracelular – colagenização e resistência da ferida.
- Cicatrização por primeira intenção: incisões cirúrgicas e lacerações limpas, bordas são aproximadas e pequena quantidade de tecido fibroso é formado.
- Ocorre por exemplo num corte cirúrgico – preciso!
- Morte de um número limitado de células epiteliais e tecido conjuntivo
- Ruptura da membrana basal epitelial
- Espaço aberto é preenchido por sangue coagulado (crosta que recobre a ferida)
- 24h: Neutrófilos na margem da incisão – deslocam-se para os coágulos (interior)
- 48h: Células epiteliais projetam-se depositando membrana basal
- 72h: Neutrófilos trocados por macrófagos. Tecido de granulação invade o espaço da incisão – há grande produção de colágeno.
- 5° dia: Neovascularização máxima. Muito colágeno é observado na epiderme de espessura normal.
- 2ª Semana: Infiltrado de leucócitos, edema e eritema desaparecem. Há empalidecimento da incisão devido ao colágeno.
- Cicatrização por segunda intenção: lacerações com incapacidade de aproximação das margens da ferida, presença de material estranho, tecido necrótico e infecções. Vistas em grandes lesões epidérmicas.
- Há perda de grande quantidade de tecido, por exemplo em infartos ou abscessos, as células são incapazes de recompor a arquitetura original do tecido. Muito tecido de granulação é formado.
- Difere da cicatrização primária devido:
- Reação inflamatória mais intensa
- Quantidades bem maiores de tecido de granulação
- Contração da ferida: cicatriz resultante é bem discreta devido a grande atividade de contração (miofibroblastos)
Resistência da Ferida –
- Ao final da primeira semana pode-se remover as suturas – já temos 10% da resistência da pele original.
- Ao final da terceira semana – teremos 70-80% da recuperação da pele original.
Aspectos que Influenciam na Cicatrização:
1. Nutrição (vitamina C ou zinco por exemplo)
2. Diabetes mellitus
3. Aterosclerose
4. Hormônios – glicocorticóides por exemplo
5. Infecções
6. Quimioterápicos e coagulopatias
7. Corpos Estranhos
8. Tamanho da Lesão
9. Fatores Mecânicos

1. Formação inadequada de tecido de granulação: ulceração (vascularização inadequada) e ou ruptura da ferida.
2. Formação excessiva dos componentes de reparo: excesso de colágeno pode originar uma tumefação elevada = quelóide. A proliferação inadequada de fibroblastos dará origem ao que chamamos de desmóides (fibromatoses agressivas).
3. Contraturas (observada em pele de queimados).
4. Deiscência do Ferimento (reabertura): herniações.

a) Limpeza e Preparação: retirada do exsudato inflamatório, fibrina e tecido necrótico;
b) Retração: miofibroblastos (aproximação e retração da ferida)
c) Tecido de granulação: tecido rico em fibroblastos, células endoteliais, neovascularização intensa. Tecido é mole, cavernoso, incolor de sangramento fácil.
d) Maturação: amadurecimento do colágeno depositado pelos fibroblastos, redução dos vasos sangüíneos e fibroplasia. Empalidecimento da ferida.
e) Reepitelização: epitélio regenera-se quando a membrana basal for recomposta.
f) Resistência: dada pelos miofibroblastos e colágeno (força tensil).

Nenhum comentário:
Postar um comentário